Though I often play with LLMs and agents, most don’t make it out of the terminal. Per @karpathy's recommendation, I thought I would be wise to spend a few hours learning a bit of Streamlit.

Karpathy on Strealit

See code on leeknowlton/streamlit-exploration.

Basic Installation

Note: See the Streamlit docs for more comprehensive tutorials. These are just quick, rough notes.

  1. If you’ve already set up the project, navigate to the folder and run source .venv/bin/activate to reactivate your virtual environment.

  2. Create a new virtual environment

    python3 -m venv .venv

  3. Install the streamlit package

    pip3 install streamlit

  4. Run the demo app

    streamlit hello

  5. Voilà! Streamlit Hello

Basic tables and charts

  • Using numpy to create a table with random numbers
import streamlit as st
import numpy as np

data = pd.DataFrame(np.random.randn(6, 3), columns=["a", "b", "c"])
  • Visualizing the table st.write(data) Streamlit Hello
  • A first attempt at adding a line chart st.line_chart(data) Streamlit Hello

A Simple Agent Frontend

Before wrapping up, I created a simple AI agent front-end that used DuckDuckGo search as a tool. Streamlit Agent

import os

import streamlit as st

from langchain.chat_models import ChatOpenAI
from langchain.agents import AgentType, initialize_agent
from import DuckDuckGoSearchResults
from langchain.callbacks import StreamlitCallbackHandler
from langchain.chat_models import ChatOpenAI
from import Tool

from dotenv import load_dotenv


openai_api_key = os.getenv("OPENAI_API_KEY")

search = DuckDuckGoSearchResults()

llm = ChatOpenAI(temperature=0, streaming=True)

tools = [
        description="useful for when you need to answer questions about current events",

agent = initialize_agent(
    tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True

if prompt := st.chat_input():
    with st.chat_message("assistant"):
        st_callback = StreamlitCallbackHandler(st.container())
        response =, callbacks=[st_callback])